Opengl笔记

1. Opengl简介:

  1. OpenGL是一种应用程序编程接口,它是一种可以对图形硬件设备特性进行访问的软件库。
  2. OpenGL被设计为一个现代化的、硬件无关的接口,因此我们可以在不考虑计算机操作系统或窗口系统的前提下,在多种不同的图形硬件系统上,或者完全通过软件的方式实现OpenGL接口。
  3. OpenGL自身并不包含任何执行窗口任务,或者处理用户输入的函数。
  4. OpenGL也没有提供任何用于表达三维物体模型,或者读取图像文件的操作。我们需要通过一系列的几何图元(点,线段,三角形,以及patch)来创建三维空间物体!
  5. OpenGL API是过程性的,不是描述性的,即OpenGL不是面向对象的,所以OpenGL无法利用面向对象的特性。使用的时候只需要:程序与OpenGL的实现链接就可以了!
  6. OpenGL的实现可以是软件实现,也可以是硬件实现。
  7. 软件实现:是对OpengGL函数调用时作出的响应并创建二维或三维图像的函数库。
  8. 硬件实现:则是通过设置能够绘制图形或图像的图形卡驱动程序 硬件实现要比软件实现快得多!!

应用领域:视频、图形、图片处理,2D/3D游戏引擎开发,科学可视化,医学软件的开发 ,CAD(计算机辅助技术),虚拟实境(AR VR),AI人工智能

OpenGL ES和OpenGL有什么关系?

  1. OpenGL ES是OpenGL的子集,针对手机、PDA和游戏主机嵌入式设备而设计
  2. OpenGL ES 是从 OpenGL 裁剪定制而来的,去除了 glBegin/glEnd,四边形(GL_QUADS)、多边形(GL_POLYGONS)等复杂图元等许多非绝对必要的特性,剩下最核心有用的部分。

OpenGL程序需要执行的主要操作步骤

  1. 从OpenGL的几何图元中设置数据,用于构建形状
  2. 使用不同的着色器对输入的图元数据执行计算操作,判断位置,颜色以及其他渲染属性。
  3. 将输入图元的数学描述 转换为与屏幕位置对应的像素片元,也称(光栅化)。
  4. 针对光栅化过程产生的每个片元,执行 片元着色器,从而决定这个片元的最终颜色和位置
  5. 如果有必要 可以对片元执行一些额外操作。 例如:判断片元对应的对象是否可见,或者将片元的颜色与当前屏幕位置的颜色进行融合。

坐标系与变换

  1. 在开发OpenGL程序时,需要用到两个坐标系。 一个称为对象坐标系 :(物体坐标系)第一个坐标系是我们在开发中使用的坐标系。 另一个称为世界坐标系:(世界坐标系)第二个坐标系又称为窗口坐标系或屏幕坐标系,在这个坐标系中的单位是像素。
  2. 在绘制的过程中,OpenGL会自动实现从对象到窗口坐标系的转换,所需要的信息是屏幕中显示窗口的尺寸和用户希望显示对象空间的大小。
  3. OpenGL中所需要的坐标系变换由两个矩阵决定, 即:模型视图矩阵和投影矩阵,这些矩阵是OpenGL的状态的一部分。 设置这两种矩阵的典型步骤包括以下三个步骤:

    • 指定我们希望修改的矩阵。
    • 将矩阵设为单位矩阵。
    • 修改当前矩阵为用户期望的矩阵

什么是Shaders?

Shaders在现代OpenGL中是个很重要的概念。应用程序离不开它,除非你理解了,否则这些代码也没有任何意义。

Shaders是一段GLSL小程序,运行在GPU上而非CPU。它们使用OpenGL Shading Language (GLSL)语言编写,看上去像C或C++,但却是另外一种不同的语言。使用shader就像你写个普通程序一样:写代码,编译,最后链接在一起才生成最终的程序。

Shaders并不是个很好的名字,因为它不仅仅只做着色。只要记得它们是个用不同的语言写的,运行在显卡上的小程序就行。

在旧版本的OpenGL中,shaders是可选的。在现代OpenGL中,为了能在屏幕上显示出物体,shaders是必须的。

			主程序					Shader程序
语言			C++						GLSL
主函数		int main(int, char**);	void main();
运行于		CPU						GPU
需要编译?	是						是
需要链接?	是						是

Vertex Shaders

Vertex shader主要用来将点(x,y,z坐标)变换成不同的点。

Vertex Shader的GLSL代码如下:

#version 150

in vec3 vert;

void main() {
    // does not alter the vertices at all
    gl_Position = vec4(vert, 1);
}

第一行#version 150告诉OpenGL这个shader使用GLSL版本1.50.

第二行in vec3 vert;告诉shader需要那一个顶点作为输入,放入变量vert。

第三行定义函数main,这是shader运行入口。这看上去像C,但GLSL中main不需要带任何参数,并且不用返回void。

第四行gl_Position = vec4(vert, 1);将输入的顶点直接输出,变量gl_Position是OpenGL定义的全局变量,用来存储vertex shader的输出。所有vertex shaders都需要对gl_Position进行赋值。

gl_Position是4D坐标(vec4),但vert是3D坐标(vec3),所以我们需要将vert转换为4D坐标vec4(vert, 1)。第二个的参数1是赋值给第四维坐标。我们会在后续教程中学到更多关于4D坐标的东西。但现在,我们只要知道第四维坐标是1即可,i可以忽略它就把它当做3D坐标来对待。

Fragment Shaders

Fragment shader的主要功能是计算每个需要绘制的像素点的颜色。 一个”fragment”基本上就是一个像素,所以你可以认为片段着色器(fragment shader)就是像素着色器(pixel shader)。

#version 150

out vec4 finalColor;

void main() {
    //set every drawn pixel to white
    finalColor = vec4(1.0, 1.0, 1.0, 1.0);
}

第二行finalColor = vec4(1.0, 1.0, 1.0, 1.0);将输出变量设为白色。vec4(1.0, 1.0, 1.0, 1.0)是创建一个RGBA颜色,并且红绿蓝和alpha都设为最大值,即白色。

编译和链接Shaders

在C++中,你需要对你的.cpp文件进行编译,然后链接到一起组成最终的程序。

什么是VBO和VAO?

当shaders运行在GPU,其它代码运行在CPU时,你需要有种方式将数据从CPU传给GPU。3D模型会有成千上万个顶点,颜色,贴图坐标和其它东西。

Vertex Buffer Objects (VBOs)和Vertex Array Objects (VAOs)。VBO和VAO用来将C++程序的数据传给shaders来渲染。

在旧版本的OpenGL中,是通过glVertex,glTexCoord和glNormal函数把每帧数据发送给GPU的。在现代OpenGL中,所有数据必须通过VBO在渲染之前发送给显卡。当你需要渲染某些数据时,通过设置VAO来描述该获取哪些VBO数据推送给shader变量。

Vertex Buffer Objects (VBOs)

glGenBuffers函数和一个缓冲ID生成一个VBO对象:

GLuint VBO;
glGenBuffers(1, &VBO);  

第一步我们需要从内存里上传三角形的三个顶点到显存中。这就是VBO该干的事。VBO其实就是显存的“缓冲区(buffers)” - 一串包含各种二进制数据的字节区域。你能上传3D坐标,颜色,甚至是你喜欢的音乐和诗歌。VBO不关心这些数据是啥,因为它只是对内存进行复制。

Vertex Array Objects (VAOs)

第二步我们要用VBO的数据在shaders中渲染三角形。请记住VBO只是一块数据,它不清楚这些数据的类型。而告诉OpenGL这缓冲区里是啥类型数据,这事就归VAO管。

VAO对VBO和shader变量进行了连接。它描述了VBO所包含的数据类型,还有该传递数据给哪个shader变量。在OpenGL所有不准确的技术名词中,“Vertex Array Object”是最烂的一个,因为它根本没有解释VAO该干的事。

你回头看下本文的vertex shader(在文章的前面),你就能发现我们只有一个输入变量vert。在本文中,我们用VAO来说明“hi,OpenGL,这里的VBO有3D顶点,我想要你在vertex shader时,发三个顶点数据给vert变量。”

在后续的文章中,我们会用VAO来说“hi,OpenGL,这里的VBO有3D顶点,颜色,贴图坐标,我想要你在shader时,发顶点数据给vert变量,发颜色数据给vertColor变量,发贴图坐标给vertTexCoord变量。”

给使用上个OpenGL版本的用户的提醒

假如你在旧版本的OpenGL中使用了VBO但没有用到VAO,你可能会不认同VAO的描述。你会争论说“顶点属性”可以用glVertexAttribPointer将VBO和shaders连接起来,而不是用VAO。这取决于你是否认为顶点属性应该是VAO“内置(inside)”的(我是这么认为的),或者说它们是否是VAO外置的一个全局状态。3.2内核和我用的AIT驱动中,VAO不是可选项 - 没有VAO的封装glEnableVertexAttribArray, glVertexAttribPointer和glDrawArrays都会导致GL_INVALID_OPERATION错误。这就是为啥我认为顶点属性应该内置于VAO,而非全局状态的原因。3.2内核手册也说VAO是必须的,但我只听说ATI驱动会抛错误。下面描述引用自OpenGL 3.2内核手册

所有与顶点处理有关的数据定义都应该封装在VAO里。
一般VAO边界包含所有更改vertex array状态的命令,比如VertexAttribPointer和EnableVertexAttribArray;所有使用vertex array进行绘制的命令,比如DrawArrays和DrawElements;所有对vertex array状态进行查询的命令(见第6章)。

不管怎样,我也知道为啥会有人认为顶点属性应该放在VAO外部。glVertexAttribPointer出现早于VAO,在这段时间里顶点属性一直被认为是全局状态。你应该能看得出VAO是一种改变全局状态的有效方法。我更倾向于认为是这样:假如你没有创建VAO,那OpenGL通过了一个默认的全局VAO。所以当你使用glVertexAttribPointer时,你仍然是在VAO内修改顶点属性,只不过现在从默认的VAO变成你自己创建的VAO。

这里有更多的讨论:http://www.opengl.org/discussion_boards/showthread.php/174577-Questions-on-VAOs

GLEW, GLFW和GLM介绍

The OpenGL Extension Wrangler (GLEW)是用来访问OpenGL 3.2 API函数的。不幸的是你不能简单的使用#include <GL/gl.h>来访问OpenGL接口,除非你想用旧版本的OpenGL。在现代OpenGL中,API函数是在运行时(run time)确定的,而非编译期(compile time)。GLEW可以在运行时加载OpenGL API。

GLFW允许我们跨平台创建窗口,接受鼠标键盘消息。OpenGL不处理这些窗口创建和输入,所以就需要我们自己动手。我选择GLFW是因为它很小,并且容易理解。 一个轻量级的,开源的,跨平台的library。支持OpenGL及OpenGL ES,用来管理窗口,读取输入,处理事件等。因为OpenGL没有窗口管理的功能,所以很多热心的人写了工具来支持这些功能,比如早期的glut,现在的freeglut等。那么GLFW有何优势呢?glut太老了,最后一个版本还是90年代的。freeglut完全兼容glut,算是glut的代替品,功能齐全,但是bug太多。稳定性也不好(不是我说的啊),GLFW应运而生。

OpenGL Mathematics (GLM)是一个数学库,用来处理矢量和矩阵等几乎其它所有东西。旧版本OpenGL提供了类似glRotate, glTranslate和glScale等函数,在现代OpenGL中,这些函数已经不存在了,我们需要自己处理所有的数学运算。GLM能在后续教程里提供很多矢量和矩阵运算上帮助。

在这系列的所有教程中,我们还编写了一个小型库tdogl用来重用C++代码。这篇教程会包含tdogl::Shader和tdogl::Program用来加载,编译和链接shaders。

OpenGL自身是一个巨大的状态机(State Machine):一系列的变量描述OpenGL此刻应当如何运行。OpenGL的状态通常被称为OpenGL上下文(Context)。我们通常使用如下途径去更改OpenGL状态:设置选项,操作缓冲。最后,我们使用当前OpenGL上下文来渲染。

学习网站

http://www.opengl-tutorial.org/

https://learnopengl-cn.readthedocs.io/zh/latest/

基础学习

标准化设备坐标(Normalized Device Coordinates, NDC)

一旦你的顶点坐标已经在顶点着色器中处理过,它们就应该是标准化设备坐标了,标准化设备坐标是一个x、y和z值在-1.0到1.0的一小段空间。任何落在范围外的坐标都会被丢弃/裁剪,不会显示在你的屏幕上。

GL_STATIC_DRAW :数据不会或几乎不会改变。
GL_DYNAMIC_DRAW:数据会被改变很多。
GL_STREAM_DRAW :数据每次绘制时都会改变。

编译着色器

首先要做的是创建一个着色器对象,注意还是用ID来引用的。所以我们储存这个顶点着色器为GLuint,然后用glCreateShader创建这个着色器:

GLuint vertexShader;
vertexShader = glCreateShader(GL_VERTEX_SHADER); 我们把需要创建的着色器类型以参数形式提供给glCreateShader。由于我们正在创建一个顶点着色器,传递的参数是GL_VERTEX_SHADER。

下一步我们把这个着色器源码附加到着色器对象上,然后编译它:

glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
glCompileShader(vertexShader); glShaderSource函数把要编译的着色器对象作为第一个参数。第二参数指定了传递的源码字符串数量,这里只有一个。第三个参数是顶点着色器真正的源码,第四个参数我们先设置为NULL。

希望检测在调用glCompileShader后编译是否成功了:

GLint success;
GLchar infoLog[512];
glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
if(!success)
{
    glGetShaderInfoLog(vertexShader, 512, NULL, infoLog);
    std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
}

着色器程序

着色器程序对象(Shader Program Object)是多个着色器合并之后并最终链接完成的版本。如果要使用刚才编译的着色器我们必须把它们链接为一个着色器程序对象,然后在渲染对象的时候激活这个着色器程序。已激活着色器程序的着色器将在我们发送渲染调用的时候被使用。

当链接着色器至一个程序的时候,它会把每个着色器的输出链接到下个着色器的输入。当输出和输入不匹配的时候,你会得到一个连接错误。

创建一个程序对象很简单:

GLuint shaderProgram;
shaderProgram = glCreateProgram(); glCreateProgram函数创建一个程序,并返回新创建程序对象的ID引用。现在我们需要把之前编译的着色器附加到程序对象上,然后用glLinkProgram链接它们:

glAttachShader(shaderProgram, vertexShader);
glAttachShader(shaderProgram, fragmentShader);
glLinkProgram(shaderProgram);

检测链接着色器程序是否失败,并获取相应的日志: glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success); if(!success) { glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog); … }

得到的结果就是一个程序对象,我们可以调用glUseProgram函数,用刚创建的程序对象作为它的参数,以激活这个程序对象:

glUseProgram(shaderProgram);

在把着色器对象链接到程序对象以后,记得删除着色器对象,我们不再需要它们了:

glDeleteShader(vertexShader);
glDeleteShader(fragmentShader);

Uniform

Uniform是一种从CPU中的应用向GPU中的着色器发送数据的方式,但uniform和顶点属性有些不同。

  1. uniform是全局的(Global)。全局意味着uniform变量必须在每个着色器程序对象中都是独一无二的,而且它可以被着色器程序的任意着色器在任意阶段访问。
  2. 无论你把uniform值设置成什么,uniform会一直保存它们的数据,直到它们被重置或更新。

如果你声明了一个uniform却在GLSL代码中没用过,编译器会静默移除这个变量,导致最后编译出的版本中并不会包含它,这可能导致几个非常麻烦的错误,记住这点!

#version 330 core
out vec4 color;

uniform vec4 ourColor; // 在OpenGL程序代码中设定这个变量

void main()
{
    color = ourColor;
} 

代码中,可以改变这个ourColor

GLfloat timeValue = glfwGetTime();
GLfloat greenValue = (sin(timeValue) / 2) + 0.5;
GLint vertexColorLocation = glGetUniformLocation(shaderProgram, "ourColor");
glUseProgram(shaderProgram);
glUniform4f(vertexColorLocation, 0.0f, greenValue, 0.0f, 1.0f);

注意,查询uniform地址不要求你之前使用过着色器程序,但是更新一个unform之前你必须先使用程序(调用glUseProgram),因为它是在当前激活的着色器程序中设置unform的。

变换 GLM

GLM是OpenGL Mathematics的缩写,它是一个只有头文件的库,也就是说我们只需包含对应的头文件就行了,不用链接和编译。GLM可以在它们的网站上下载。把头文件的根目录复制到你的includes文件夹,然后你就可以使用这个库了。

我们需要的GLM的大多数功能都可以从下面这3个头文件中找到:

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

glm::vec4 vec(1.0f, 0.0f, 0.0f, 1.0f);
glm::mat4 trans;
trans = glm::translate(trans, glm::vec3(1.0f, 1.0f, 0.0f));
vec = trans * vec;
std::cout << vec.x << vec.y << vec.z << std::endl;

glm::mat4 trans;
trans = glm::rotate(trans, 90.0f, glm::vec3(0.0, 0.0, 1.0));
trans = glm::scale(trans, glm::vec3(0.5, 0.5, 0.5)); 
gl_Position = transform * vec; 

参考:

  1. my coding.net
  2. 定义
  3. OpenGL
  4. http://huangwei.pro/2015-05/modern-opengl1/
  5. GLFW
  6. OpenGL总结
  7. 记录几个 OpenGL 学习的靠谱网站